HEX
Server: Apache
System: Linux s198.coreserver.jp 5.15.0-151-generic #161-Ubuntu SMP Tue Jul 22 14:25:40 UTC 2025 x86_64
User: nagasaki (10062)
PHP: 7.1.33
Disabled: NONE
Upload Files
File: //usr/local/rvm/src/ruby-2.7.4/test/racc/assets/cast.y
# The MIT License
#
# Copyright (c) George Ogata
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class C::Parser
# shift/reduce conflict on "if (c) if (c) ; else ; else ;"
expect 1
rule

# A.2.4 External definitions

# Returns TranslationUnit
translation_unit
  : external_declaration                  {result = TranslationUnit.new_at(val[0].pos, NodeChain[val[0]])}
  | translation_unit external_declaration {result = val[0]; result.entities << val[1]}

# Returns Declaration|FunctionDef
external_declaration
  : function_definition {result = val[0]}
  | declaration         {result = val[0]}

# Returns FunctionDef
function_definition
  : declaration_specifiers declarator declaration_list compound_statement {result = make_function_def(val[0][0], val[0][1], val[1], val[2], val[3])}
  | declaration_specifiers declarator compound_statement                  {result = make_function_def(val[0][0], val[0][1], val[1], nil   , val[2])}

# Returns [Declaration]
declaration_list
  : declaration                  {result = [val[0]]}
  | declaration_list declaration {result = val[0] << val[1]}

# A.2.3 Statements

# Returns Statement
statement
  : labeled_statement    {result = val[0]}
  | compound_statement   {result = val[0]}
  | expression_statement {result = val[0]}
  | selection_statement  {result = val[0]}
  | iteration_statement  {result = val[0]}
  | jump_statement       {result = val[0]}

# Returns Statement
labeled_statement
  : identifier COLON statement               {val[2].labels.unshift(PlainLabel.new_at(val[0].pos, val[0].val)); result = val[2]}
  | CASE constant_expression COLON statement {val[3].labels.unshift(Case      .new_at(val[0].pos, val[1]    )); result = val[3]}
  | DEFAULT COLON statement                  {val[2].labels.unshift(Default   .new_at(val[0].pos            )); result = val[2]}
  # type names can also be used as labels
  | typedef_name COLON statement             {val[2].labels.unshift(PlainLabel.new_at(val[0].pos, val[0].name)); result = val[2]}

# Returns Block
compound_statement
  : LBRACE block_item_list RBRACE {result = Block.new_at(val[0].pos, val[1])}
  | LBRACE                 RBRACE {result = Block.new_at(val[0].pos        )}

# Returns NodeChain[Declaration|Statement]
block_item_list
  : block_item                 {result = NodeChain[val[0]]}
  | block_item_list block_item {result = val[0] << val[1]}

# Returns Declaration|Statement
block_item
  : declaration {result = val[0]}
  | statement   {result = val[0]}

# Returns ExpressionStatement
expression_statement
  : expression SEMICOLON {result = ExpressionStatement.new_at(val[0].pos, val[0])}
  |            SEMICOLON {result = ExpressionStatement.new_at(val[0].pos        )}

# Returns Statement
selection_statement
  : IF     LPAREN expression RPAREN statement                {result = If    .new_at(val[0].pos, val[2], val[4]        )}
  | IF     LPAREN expression RPAREN statement ELSE statement {result = If    .new_at(val[0].pos, val[2], val[4], val[6])}
  | SWITCH LPAREN expression RPAREN statement                {result = Switch.new_at(val[0].pos, val[2], val[4]        )}

# Returns Statement
iteration_statement
  : WHILE LPAREN expression RPAREN statement                                         {result = While.new_at(val[0].pos, val[2], val[4]              )}
  | DO statement WHILE LPAREN expression RPAREN SEMICOLON                            {result = While.new_at(val[0].pos, val[4], val[1], :do => true )}
  | FOR LPAREN expression SEMICOLON expression SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, val[2], val[4], val[6], val[8])}
  | FOR LPAREN expression SEMICOLON expression SEMICOLON            RPAREN statement {result = For.new_at(val[0].pos, val[2], val[4], nil   , val[7])}
  | FOR LPAREN expression SEMICOLON            SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, val[2], nil   , val[5], val[7])}
  | FOR LPAREN expression SEMICOLON            SEMICOLON            RPAREN statement {result = For.new_at(val[0].pos, val[2], nil   , nil   , val[6])}
  | FOR LPAREN            SEMICOLON expression SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, nil   , val[3], val[5], val[7])}
  | FOR LPAREN            SEMICOLON expression SEMICOLON            RPAREN statement {result = For.new_at(val[0].pos, nil   , val[3], nil   , val[6])}
  | FOR LPAREN            SEMICOLON            SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, nil   , nil   , val[4], val[6])}
  | FOR LPAREN            SEMICOLON            SEMICOLON            RPAREN statement {result = For.new_at(val[0].pos, nil   , nil   , nil   , val[5])}
  | FOR LPAREN declaration          expression SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, val[2], val[3], val[5], val[7])}
  | FOR LPAREN declaration          expression SEMICOLON            RPAREN statement {result = For.new_at(val[0].pos, val[2], val[3], nil   , val[6])}
  | FOR LPAREN declaration                     SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, val[2], nil   , val[4], val[6])}
  | FOR LPAREN declaration                     SEMICOLON            RPAREN statement {result = For.new_at(val[0].pos, val[2], nil   , nil   , val[5])}

# Returns Statement
jump_statement
  : GOTO identifier SEMICOLON   {result = Goto    .new_at(val[0].pos, val[1].val)}
  | CONTINUE SEMICOLON          {result = Continue.new_at(val[0].pos            )}
  | BREAK SEMICOLON             {result = Break   .new_at(val[0].pos            )}
  | RETURN expression SEMICOLON {result = Return  .new_at(val[0].pos, val[1]    )}
  | RETURN            SEMICOLON {result = Return  .new_at(val[0].pos            )}
  # type names can also be used as labels
  | GOTO typedef_name SEMICOLON {result = Goto    .new_at(val[0].pos, val[1].name)}

# A.2.2 Declarations

# Returns Declaration
declaration
  : declaration_specifiers init_declarator_list SEMICOLON {result = make_declaration(val[0][0], val[0][1], val[1])}
  | declaration_specifiers                      SEMICOLON {result = make_declaration(val[0][0], val[0][1], NodeArray[])}

# Returns {Pos, [Symbol]}
declaration_specifiers
  : storage_class_specifier declaration_specifiers {val[1][1] << val[0][1]; result = val[1]}
  | storage_class_specifier                        {result = [val[0][0], [val[0][1]]]}
  | type_specifier          declaration_specifiers {val[1][1] << val[0][1]; result = val[1]}
  | type_specifier                                 {result = [val[0][0], [val[0][1]]]}
  | type_qualifier          declaration_specifiers {val[1][1] << val[0][1]; result = val[1]}
  | type_qualifier                                 {result = [val[0][0], [val[0][1]]]}
  | function_specifier      declaration_specifiers {val[1][1] << val[0][1]; result = val[1]}
  | function_specifier                             {result = [val[0][0], [val[0][1]]]}

# Returns NodeArray[Declarator]
init_declarator_list
  : init_declarator                            {result = NodeArray[val[0]]}
  | init_declarator_list COMMA init_declarator {result = val[0] << val[2]}

# Returns Declarator
init_declarator
  : declarator                  {result = val[0]}
  | declarator EQ initializer {val[0].init = val[2]; result = val[0]}

# Returns [Pos, Symbol]
storage_class_specifier
  : TYPEDEF  {result = [val[0].pos, :typedef ]}
  | EXTERN   {result = [val[0].pos, :extern  ]}
  | STATIC   {result = [val[0].pos, :static  ]}
  | AUTO     {result = [val[0].pos, :auto    ]}
  | REGISTER {result = [val[0].pos, :register]}

# Returns [Pos, Type|Symbol]
type_specifier
  : VOID                     {result = [val[0].pos, :void      ]}
  | CHAR                     {result = [val[0].pos, :char      ]}
  | SHORT                    {result = [val[0].pos, :short     ]}
  | INT                      {result = [val[0].pos, :int       ]}
  | LONG                     {result = [val[0].pos, :long      ]}
  | FLOAT                    {result = [val[0].pos, :float     ]}
  | DOUBLE                   {result = [val[0].pos, :double    ]}
  | SIGNED                   {result = [val[0].pos, :signed    ]}
  | UNSIGNED                 {result = [val[0].pos, :unsigned  ]}
  | BOOL                     {result = [val[0].pos, :_Bool     ]}
  | COMPLEX                  {result = [val[0].pos, :_Complex  ]}
  | IMAGINARY                {result = [val[0].pos, :_Imaginary]}
  | struct_or_union_specifier {result = [val[0].pos, val[0]    ]}
  | enum_specifier            {result = [val[0].pos, val[0]    ]}
  | typedef_name              {result = [val[0].pos, val[0]    ]}

# Returns Struct|Union
struct_or_union_specifier
  : struct_or_union identifier LBRACE struct_declaration_list RBRACE   {result = val[0][1].new_at(val[0][0], val[1].val, val[3])}
  | struct_or_union            LBRACE struct_declaration_list RBRACE   {result = val[0][1].new_at(val[0][0], nil       , val[2])}
  | struct_or_union identifier                                         {result = val[0][1].new_at(val[0][0], val[1].val, nil   )}
  # type names can also be used as struct identifiers
  | struct_or_union typedef_name LBRACE struct_declaration_list RBRACE {result = val[0][1].new_at(val[0][0], val[1].name, val[3])}
  | struct_or_union typedef_name                                       {result = val[0][1].new_at(val[0][0], val[1].name, nil   )}

# Returns [Pos, Class]
struct_or_union
  : STRUCT {result = [val[0].pos, Struct]}
  | UNION  {result = [val[0].pos, Union ]}

# Returns NodeArray[Declaration]
struct_declaration_list
  : struct_declaration                         {result = NodeArray[val[0]]}
  | struct_declaration_list struct_declaration {val[0] << val[1]; result = val[0]}

# Returns Declaration
struct_declaration
  : specifier_qualifier_list struct_declarator_list SEMICOLON {result = make_declaration(val[0][0], val[0][1], val[1])}

# Returns {Pos, [Symbol]}
specifier_qualifier_list
  : type_specifier specifier_qualifier_list {val[1][1] << val[0][1]; result = val[1]}
  | type_specifier                          {result = [val[0][0], [val[0][1]]]}
  | type_qualifier specifier_qualifier_list {val[1][1] << val[0][1]; result = val[1]}
  | type_qualifier                          {result = [val[0][0], [val[0][1]]]}

# Returns NodeArray[Declarator]
struct_declarator_list
  : struct_declarator                             {result = NodeArray[val[0]]}
  | struct_declarator_list COMMA struct_declarator {result = val[0] << val[2]}

# Returns Declarator
struct_declarator
  : declarator                           {result = val[0]}
  | declarator COLON constant_expression {result = val[0]; val[0].num_bits = val[2]}
  |            COLON constant_expression {result = Declarator.new_at(val[0].pos, :num_bits => val[1])}

# Returns Enum
enum_specifier
  : ENUM identifier LBRACE enumerator_list RBRACE         {result = Enum.new_at(val[0].pos, val[1].val, val[3])}
  | ENUM            LBRACE enumerator_list RBRACE         {result = Enum.new_at(val[0].pos, nil       , val[2])}
  | ENUM identifier LBRACE enumerator_list COMMA RBRACE   {result = Enum.new_at(val[0].pos, val[1].val, val[3])}
  | ENUM            LBRACE enumerator_list COMMA RBRACE   {result = Enum.new_at(val[0].pos, nil       , val[2])}
  | ENUM identifier                                       {result = Enum.new_at(val[0].pos, val[1].val, nil   )}
  # type names can also be used as enum names
  | ENUM typedef_name LBRACE enumerator_list RBRACE       {result = Enum.new_at(val[0].pos, val[1].name, val[3])}
  | ENUM typedef_name LBRACE enumerator_list COMMA RBRACE {result = Enum.new_at(val[0].pos, val[1].name, val[3])}
  | ENUM typedef_name                                     {result = Enum.new_at(val[0].pos, val[1].name, nil   )}

# Returns NodeArray[Enumerator]
enumerator_list
  : enumerator                       {result = NodeArray[val[0]]}
  | enumerator_list COMMA enumerator {result = val[0] << val[2]}

# Returns Enumerator
enumerator
  : enumeration_constant                        {result = Enumerator.new_at(val[0].pos, val[0].val, nil   )}
  | enumeration_constant EQ constant_expression {result = Enumerator.new_at(val[0].pos, val[0].val, val[2])}

# Returns [Pos, Symbol]
type_qualifier
  : CONST    {result = [val[0].pos, :const   ]}
  | RESTRICT {result = [val[0].pos, :restrict]}
  | VOLATILE {result = [val[0].pos, :volatile]}

# Returns [Pos, Symbol]
function_specifier
  : INLINE {result = [val[0].pos, :inline]}

# Returns Declarator
declarator
  : pointer direct_declarator {result = add_decl_type(val[1], val[0])}
  |         direct_declarator {result = val[0]}

# Returns Declarator
direct_declarator
  : identifier                                                                            {result = Declarator.new_at(val[0].pos, nil, val[0].val)}
  | LPAREN declarator RPAREN                                                              {result = val[1]}
  | direct_declarator LBRACKET type_qualifier_list         assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos             ))}  # TODO
  | direct_declarator LBRACKET type_qualifier_list                               RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos             ))}  # TODO
  | direct_declarator LBRACKET                             assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos, nil, val[2]))}
  | direct_declarator LBRACKET                                                   RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos             ))}
  | direct_declarator LBRACKET STATIC type_qualifier_list  assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos             ))}  # TODO
  | direct_declarator LBRACKET STATIC                      assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos             ))}  # TODO
  | direct_declarator LBRACKET type_qualifier_list STATIC  assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos             ))}  # TODO
  | direct_declarator LBRACKET type_qualifier_list         MUL                   RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos             ))}  # TODO
  | direct_declarator LBRACKET                             MUL                   RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos             ))}  # TODO
  | direct_declarator LPAREN parameter_type_list RPAREN                                   {result = add_decl_type(val[0], Function.new_at(val[0].pos, nil, param_list(*val[2]), :var_args => val[2][1]))}
  | direct_declarator LPAREN identifier_list     RPAREN                                   {result = add_decl_type(val[0], Function.new_at(val[0].pos, nil,             val[2]))}
  | direct_declarator LPAREN                     RPAREN                                   {result = add_decl_type(val[0], Function.new_at(val[0].pos                         ))}

# Returns Pointer
pointer
  : MUL type_qualifier_list         {result = add_type_quals(Pointer.new_at(val[0].pos), val[1][1])                                         }
  | MUL                             {result =                Pointer.new_at(val[0].pos)                                                     }
  | MUL type_qualifier_list pointer {p      = add_type_quals(Pointer.new_at(val[0].pos), val[1][1]); val[2].direct_type = p; result = val[2]}
  | MUL                     pointer {p      =                Pointer.new_at(val[0].pos)            ; val[1].direct_type = p; result = val[1]}

# Returns {Pos, [Symbol]}
type_qualifier_list
  : type_qualifier                     {result = [val[0][0], [val[0][1]]]}
  | type_qualifier_list type_qualifier {val[0][1] << val[1][1]; result = val[0]}

# Returns [NodeArray[Parameter], var_args?]
parameter_type_list
  : parameter_list                {result = [val[0], false]}
  | parameter_list COMMA ELLIPSIS {result = [val[0], true ]}

# Returns NodeArray[Parameter]
parameter_list
  : parameter_declaration                      {result = NodeArray[val[0]]}
  | parameter_list COMMA parameter_declaration {result = val[0] << val[2]}

# Returns Parameter
parameter_declaration
  : declaration_specifiers declarator          {ind_type = val[1].indirect_type and ind_type.detach
                                                result = make_parameter(val[0][0], val[0][1], ind_type, val[1].name)}
  | declaration_specifiers abstract_declarator {result = make_parameter(val[0][0], val[0][1], val[1]  , nil        )}
  | declaration_specifiers                     {result = make_parameter(val[0][0], val[0][1], nil     , nil        )}

# Returns NodeArray[Parameter]
identifier_list
  : identifier                      {result = NodeArray[Parameter.new_at(val[0].pos, nil, val[0].val)]}
  | identifier_list COMMA identifier {result = val[0] << Parameter.new_at(val[2].pos, nil, val[2].val)}

# Returns Type
type_name
  : specifier_qualifier_list abstract_declarator {val[1].direct_type = make_direct_type(val[0][0], val[0][1]); result = val[1]}
  | specifier_qualifier_list                     {result             = make_direct_type(val[0][0], val[0][1])                 }

# Returns Type
abstract_declarator
  : pointer                            {result = val[0]}
  | pointer direct_abstract_declarator {val[1].direct_type = val[0]; result = val[1]}
  |         direct_abstract_declarator {result = val[0]}

# Returns Type
direct_abstract_declarator
  : LPAREN abstract_declarator RPAREN                                  {result = val[1]}
  | direct_abstract_declarator LBRACKET assignment_expression RBRACKET {val[0].direct_type = Array.new_at(val[0].pos, nil, val[2]); result = val[0]}
  | direct_abstract_declarator LBRACKET                       RBRACKET {val[0].direct_type = Array.new_at(val[0].pos, nil, nil   ); result = val[0]}
  |                            LBRACKET assignment_expression RBRACKET {result = Array.new_at(val[0].pos, nil, val[1])}
  |                            LBRACKET                       RBRACKET {result = Array.new_at(val[0].pos             )}
  | direct_abstract_declarator LBRACKET MUL                   RBRACKET {val[0].direct_type = Array.new_at(val[0].pos); result = val[0]}  # TODO
  |                            LBRACKET MUL                   RBRACKET {result = Array.new_at(val[0].pos)}  # TODO
  | direct_abstract_declarator LPAREN   parameter_type_list RPAREN     {val[0].direct_type = Function.new_at(val[0].pos, nil, param_list(*val[2]), val[2][1]); result = val[0]}
  | direct_abstract_declarator LPAREN                       RPAREN     {val[0].direct_type = Function.new_at(val[0].pos                                       ); result = val[0]}
  |                            LPAREN   parameter_type_list RPAREN     {result = Function.new_at(val[0].pos, nil, param_list(*val[1]), val[1][1])}
  |                            LPAREN                       RPAREN     {result = Function.new_at(val[0].pos                                     )}

# Returns CustomType
typedef_name
  #: identifier -- insufficient since we must distinguish between type
  #                names and var names (otherwise we have a conflict)
  : TYPENAME {result = CustomType.new_at(val[0].pos, val[0].val)}

# Returns Expression
initializer
  : assignment_expression                {result = val[0]}
  | LBRACE initializer_list RBRACE       {result = CompoundLiteral.new_at(val[0].pos, nil, val[1])}
  | LBRACE initializer_list COMMA RBRACE {result = CompoundLiteral.new_at(val[0].pos, nil, val[1])}

# Returns NodeArray[MemberInit]
initializer_list
  :                        designation initializer {result = NodeArray[MemberInit.new_at(val[0][0] , val[0][1], val[1])]}
  |                                    initializer {result = NodeArray[MemberInit.new_at(val[0].pos, nil      , val[0])]}
  | initializer_list COMMA designation initializer {result = val[0] << MemberInit.new_at(val[2][0] , val[2][1], val[3])}
  | initializer_list COMMA             initializer {result = val[0] << MemberInit.new_at(val[2].pos, nil      , val[2])}

# Returns {Pos, NodeArray[Expression|Token]}
designation
  : designator_list EQ {result = val[0]}

# Returns {Pos, NodeArray[Expression|Token]}
designator_list
  : designator                 {result = val[0]; val[0][1] = NodeArray[val[0][1]]}
  | designator_list designator {result = val[0]; val[0][1] << val[1][1]}

# Returns {Pos, Expression|Member}
designator
  : LBRACKET constant_expression RBRACKET {result = [val[1].pos, val[1]                               ]}
  | DOT identifier                        {result = [val[1].pos, Member.new_at(val[1].pos, val[1].val)]}

# A.2.1 Expressions

# Returns Expression
primary_expression
  : identifier                                     {result = Variable.new_at(val[0].pos, val[0].val)}
  | constant                                       {result = val[0]}
  | string_literal                                 {result = val[0]}
  # GCC EXTENSION: allow a compound statement in parentheses as an expression
  | LPAREN expression         RPAREN {result = val[1]}
  | LPAREN compound_statement RPAREN {block_expressions_enabled? or parse_error val[0].pos, "compound statement found where expression expected"
                                      result = BlockExpression.new(val[1]); result.pos = val[0].pos}

# Returns Expression
postfix_expression
  : primary_expression                                             {result = val[0]}
  | postfix_expression LBRACKET expression RBRACKET                {result = Index          .new_at(val[0].pos, val[0], val[2])}
  | postfix_expression LPAREN argument_expression_list RPAREN      {result = Call           .new_at(val[0].pos, val[0], val[2]     )}
  | postfix_expression LPAREN                          RPAREN      {result = Call           .new_at(val[0].pos, val[0], NodeArray[])}
  | postfix_expression DOT   identifier                            {result = Dot            .new_at(val[0].pos, val[0], Member.new(val[2].val))}
  | postfix_expression ARROW identifier                            {result = Arrow          .new_at(val[0].pos, val[0], Member.new(val[2].val))}
  | postfix_expression INC                                         {result = PostInc        .new_at(val[0].pos, val[0]        )}
  | postfix_expression DEC                                         {result = PostDec        .new_at(val[0].pos, val[0]        )}
  | LPAREN type_name RPAREN LBRACE initializer_list RBRACE         {result = CompoundLiteral.new_at(val[0].pos, val[1], val[4])}
  | LPAREN type_name RPAREN LBRACE initializer_list COMMA RBRACE   {result = CompoundLiteral.new_at(val[0].pos, val[1], val[4])}

# Returns [Expression|Type]
argument_expression_list
  : argument_expression                                {result = NodeArray[val[0]]}
  | argument_expression_list COMMA argument_expression {result = val[0] << val[2]}

# Returns Expression|Type -- EXTENSION: allow type names here too, to support some standard library macros (e.g., va_arg [7.15.1.1])
argument_expression
  : assignment_expression {result = val[0]}
  | type_name             {result = val[0]}

# Returns Expression
unary_expression
  : postfix_expression             {result = val[0]}
  | INC unary_expression           {result = PreInc.new_at(val[0].pos, val[1])}
  | DEC unary_expression           {result = PreDec.new_at(val[0].pos, val[1])}
  | unary_operator cast_expression {result = val[0][0].new_at(val[0][1], val[1])}
  | SIZEOF unary_expression        {result = Sizeof.new_at(val[0].pos, val[1])}
  | SIZEOF LPAREN type_name RPAREN {result = Sizeof.new_at(val[0].pos, val[2])}

# Returns [Class, Pos]
unary_operator
  : AND  {result = [Address    , val[0].pos]}
  | MUL  {result = [Dereference, val[0].pos]}
  | ADD  {result = [Positive   , val[0].pos]}
  | SUB  {result = [Negative   , val[0].pos]}
  | NOT  {result = [BitNot     , val[0].pos]}
  | BANG {result = [Not        , val[0].pos]}

# Returns Expression
cast_expression
  : unary_expression                    {result = val[0]}
  | LPAREN type_name RPAREN cast_expression {result = Cast.new_at(val[0].pos, val[1], val[3])}

# Returns Expression
multiplicative_expression
  : cast_expression                               {result = val[0]}
  | multiplicative_expression MUL cast_expression {result = Multiply.new_at(val[0].pos, val[0], val[2])}
  | multiplicative_expression DIV cast_expression {result = Divide  .new_at(val[0].pos, val[0], val[2])}
  | multiplicative_expression MOD cast_expression {result = Mod     .new_at(val[0].pos, val[0], val[2])}

# Returns Expression
additive_expression
  : multiplicative_expression                         {result = val[0]}
  | additive_expression ADD multiplicative_expression {result = Add     .new_at(val[0].pos, val[0], val[2])}
  | additive_expression SUB multiplicative_expression {result = Subtract.new_at(val[0].pos, val[0], val[2])}

# Returns Expression
shift_expression
  : additive_expression                         {result = val[0]}
  | shift_expression LSHIFT additive_expression {result = ShiftLeft .new_at(val[0].pos, val[0], val[2])}
  | shift_expression RSHIFT additive_expression {result = ShiftRight.new_at(val[0].pos, val[0], val[2])}

# Returns Expression
relational_expression
  : shift_expression                             {result = val[0]}
  | relational_expression LT  shift_expression {result = Less.new_at(val[0].pos, val[0], val[2])}
  | relational_expression GT  shift_expression {result = More.new_at(val[0].pos, val[0], val[2])}
  | relational_expression LEQ shift_expression {result = LessOrEqual.new_at(val[0].pos, val[0], val[2])}
  | relational_expression GEQ shift_expression {result = MoreOrEqual.new_at(val[0].pos, val[0], val[2])}

# Returns Expression
equality_expression
  : relational_expression                           {result = val[0]}
  | equality_expression EQEQ relational_expression {result = Equal   .new_at(val[0].pos, val[0], val[2])}
  | equality_expression NEQ  relational_expression {result = NotEqual.new_at(val[0].pos, val[0], val[2])}

# Returns Expression
and_expression
  : equality_expression                    {result = val[0]}
  | and_expression AND equality_expression {result = BitAnd.new_at(val[0].pos, val[0], val[2])}

# Returns Expression
exclusive_or_expression
  : and_expression                             {result = val[0]}
  | exclusive_or_expression XOR and_expression {result = BitXor.new_at(val[0].pos, val[0], val[2])}

# Returns Expression
inclusive_or_expression
  : exclusive_or_expression                            {result = val[0]}
  | inclusive_or_expression OR exclusive_or_expression {result = BitOr.new_at(val[0].pos, val[0], val[2])}

# Returns Expression
logical_and_expression
  : inclusive_or_expression                               {result = val[0]}
  | logical_and_expression ANDAND inclusive_or_expression {result = And.new_at(val[0].pos, val[0], val[2])}

# Returns Expression
logical_or_expression
  : logical_and_expression                            {result = val[0]}
  | logical_or_expression OROR logical_and_expression {result = Or.new_at(val[0].pos, val[0], val[2])}

# Returns Expression
conditional_expression
  : logical_or_expression                                                  {result = val[0]}
  | logical_or_expression QUESTION expression COLON conditional_expression {result = Conditional.new_at(val[0].pos, val[0], val[2], val[4])}

# Returns Expression
assignment_expression
  : conditional_expression                                     {result = val[0]}
  | unary_expression assignment_operator assignment_expression {result = val[1].new_at(val[0].pos, val[0], val[2])}

# Returns Class
assignment_operator
  : EQ       {result =           Assign}
  | MULEQ    {result =   MultiplyAssign}
  | DIVEQ    {result =     DivideAssign}
  | MODEQ    {result =        ModAssign}
  | ADDEQ    {result =        AddAssign}
  | SUBEQ    {result =   SubtractAssign}
  | LSHIFTEQ {result =  ShiftLeftAssign}
  | RSHIFTEQ {result = ShiftRightAssign}
  | ANDEQ    {result =     BitAndAssign}
  | XOREQ    {result =     BitXorAssign}
  | OREQ     {result =      BitOrAssign}

# Returns Expression
expression
  : assignment_expression                 {result = val[0]}
  | expression COMMA assignment_expression {
    if val[0].is_a? Comma
      if val[2].is_a? Comma
        val[0].exprs.push(*val[2].exprs)
      else
        val[0].exprs << val[2]
      end
      result = val[0]
    else
      if val[2].is_a? Comma
        val[2].exprs.unshift(val[0])
        val[2].pos = val[0].pos
        result = val[2]
      else
        result = Comma.new_at(val[0].pos, NodeArray[val[0], val[2]])
      end
    end
  }

# Returns Expression
constant_expression
    : conditional_expression {result = val[0]}

# A.1.1 -- Lexical elements
#
# token
#   : keyword        (raw string)
#   | identifier     expanded below
#   | constant       expanded below
#   | string_literal expanded below
#   | punctuator     (raw string)
#
# preprocessing-token (skip)

# Returns Token
identifier
  : ID {result = val[0]}

# Returns Literal
constant
  : ICON {result = val[0].val; result.pos = val[0].pos}
  | FCON {result = val[0].val; result.pos = val[0].pos}
  #| enumeration_constant -- these are parsed as identifiers at all
  #                          places the `constant' nonterminal appears
  | CCON {result = val[0].val; result.pos = val[0].pos}

# Returns Token
enumeration_constant
  : ID {result = val[0]}

# Returns StringLiteral
# Also handles string literal concatenation (6.4.5.4)
string_literal
  : string_literal SCON {val[0].val << val[1].val.val; result = val[0]}
  | SCON { result = val[0].val; result.pos = val[0].pos }

---- inner
  # A.1.9 -- Preprocessing numbers -- skip
  # A.1.8 -- Header names -- skip

  # A.1.7 -- Puncuators -- we don't bother with {##,#,%:,%:%:} since
  # we don't do preprocessing
  @@punctuators = %r'\+\+|-[->]|&&|\|\||\.\.\.|(?:<<|>>|[<>=!*/%+\-&^|])=?|[\[\](){}.~?:;,]'
  @@digraphs    = %r'<[:%]|[:%]>'

  # A.1.6 -- String Literals -- simple for us because we don't decode
  # the string (and indeed accept some illegal strings)
  @@string_literal = %r'L?"(?:[^\\]|\\.)*?"'m

  # A.1.5 -- Constants
  @@decimal_floating_constant     = %r'(?:(?:\d*\.\d+|\d+\.)(?:e[-+]?\d+)?|\d+e[-+]?\d+)[fl]?'i
  @@hexadecimal_floating_constant = %r'0x(?:(?:[0-9a-f]*\.[0-9a-f]+|[0-9a-f]+\.)|[0-9a-f]+)p[-+]?\d+[fl]?'i

  @@integer_constant     = %r'(?:[1-9][0-9]*|0x[0-9a-f]+|0[0-7]*)(?:ul?l?|ll?u?)?'i
  @@floating_constant    = %r'#{@@decimal_floating_constant}|#{@@hexadecimal_floating_constant}'
  @@enumeration_constant = %r'[a-zA-Z_\\][a-zA-Z_\\0-9]*'
  @@character_constant   = %r"L?'(?:[^\\]|\\.)+?'"
  # (note that as with string-literals, we accept some illegal
  # character-constants)

  # A.1.4 -- Universal character names -- skip

  # A.1.3 -- Identifiers -- skip, since an identifier is lexically
  # identical to an enumeration constant

  # A.1.2 Keywords
  keywords = %w'auto break case char const continue default do
double else enum extern float for goto if inline int long register
restrict return short signed sizeof static struct switch typedef union
 unsigned void volatile while _Bool _Complex _Imaginary'
  @@keywords = %r"#{keywords.join('|')}"

  def initialize
    @type_names = ::Set.new

    @warning_proc = lambda{}
    @pos          = C::Node::Pos.new(nil, 1, 0)
  end
  def initialize_copy(x)
    @pos        = x.pos.dup
    @type_names = x.type_names.dup
  end
  attr_accessor :pos, :type_names

  def parse(str)
    if str.respond_to? :read
      str = str.read
    end
    @str = str
    begin
      prepare_lexer(str)
      return do_parse
    rescue ParseError => e
      e.set_backtrace(caller)
      raise
    end
  end

  #
  # Error handler, as used by racc.
  #
  def on_error(error_token_id, error_value, value_stack)
    if error_value == '$'
      parse_error @pos, "unexpected EOF"
    else
      parse_error(error_value.pos,
                  "parse error on #{token_to_str(error_token_id)} (#{error_value.val})")
    end
  end

  def self.feature(name)
    attr_writer "#{name}_enabled"
    class_eval <<-EOS
      def enable_#{name}
        @#{name}_enabled = true
      end
      def #{name}_enabled?
        @#{name}_enabled
      end
    EOS
  end
  private_class_method :feature

  #
  # Allow blocks in parentheses as expressions, as per the gcc
  # extension.  [http://rubyurl.com/iB7]
  #
  feature :block_expressions

  private  # ---------------------------------------------------------

  class Token
    attr_accessor :pos, :val
    def initialize(pos, val)
      @pos = pos
      @val = val
    end
  end
  def eat(str)
    lines = str.split(/\r\n|[\r\n]/, -1)
    if lines.length == 1
      @pos.col_num += lines[0].length
    else
      @pos.line_num += lines.length - 1
      @pos.col_num = lines[-1].length
    end
  end

  #
  # Make a Declaration from the given specs and declarators.
  #
  def make_declaration(pos, specs, declarators)
    specs.all?{|x| x.is_a?(Symbol) || x.is_a?(Type)} or raise specs.map{|x| x.class}.inspect
    decl = Declaration.new_at(pos, nil, declarators)

    # set storage class
    storage_classes = specs.find_all do |x|
      [:typedef, :extern, :static, :auto, :register].include? x
    end
    # 6.7.1p2: at most, one storage-class specifier may be given in
    # the declaration specifiers in a declaration
    storage_classes.length <= 1 or
      begin
        if declarators.length == 0
          for_name = ''
        else
          for_name = "for `#{declarators[0].name}'"
        end
        parse_error pos, "multiple or duplicate storage classes given #{for_name}'"
      end
    decl.storage = storage_classes[0]

    # set type (specifiers, qualifiers)
    decl.type = make_direct_type(pos, specs)

    # set function specifiers
    decl.inline = specs.include?(:inline)

    # look for new type names
    if decl.typedef?
      decl.declarators.each do |d|
        if d.name
          @type_names << d.name
        end
      end
    end

    return decl
  end

  def make_function_def(pos, specs, func_declarator, decl_list, defn)
    add_decl_type(func_declarator, make_direct_type(pos, specs))

    # get types from decl_list if necessary
    function = func_declarator.indirect_type
    function.is_a? Function or
      parse_error pos, "non function type for function `#{func_declarator.name}'"
    params = function.params
    if decl_list
      params.all?{|p| p.type.nil?} or
        parse_error pos, "both prototype and declaration list given for `#{func_declarator.name}'"
      decl_list.each do |declaration|
        declaration.declarators.each do |declarator|
          param = params.find{|p| p.name == declarator.name} or
            parse_error pos, "no parameter named #{declarator.name}"
          if declarator.indirect_type
            param.type = declarator.indirect_type
            param.type.direct_type = declaration.type.dup
          else
            param.type = declaration.type.dup
          end
        end
      end
      params.all?{|p| p.type} or
        begin
          s = params.find_all{|p| p.type.nil?}.map{|p| "`#{p.name}'"}.join(' and ')
          parse_error pos, "types missing for parameters #{s}"
        end
    end

    fd = FunctionDef.new_at(pos,
                            function.detach,
                            func_declarator.name,
                            defn,
                            :no_prototype => !decl_list.nil?)

    # set storage class
    # 6.9.1p4: only extern or static allowed
    specs.each do |s|
      [:typedef, :auto, :register].include?(s) and
        "`#{s}' illegal for function"
    end
    storage_classes = specs.find_all do |s|
      s == :extern || s == :static
    end
    # 6.7.1p2: at most, one storage-class specifier may be given in
    # the declaration specifiers in a declaration
    storage_classes.length <= 1 or
      "multiple or duplicate storage classes given for `#{func_declarator.name}'"
    fd.storage = storage_classes[0] if storage_classes[0]

    # set function specifiers
    # 6.7.4p5 'inline' can be repeated
    fd.inline = specs.include?(:inline)

    return fd
  end

  #
  # Make a direct type from the list of type specifiers and type
  # qualifiers.
  #
  def make_direct_type(pos, specs)
    specs_order = [:signed, :unsigned, :short, :long, :double, :void,
      :char, :int, :float, :_Bool, :_Complex, :_Imaginary]

    type_specs = specs.find_all do |x|
      specs_order.include?(x) || !x.is_a?(Symbol)
    end
    type_specs.sort! do |a, b|
      (specs_order.index(a)||100) <=> (specs_order.index(b)||100)
    end

    # set type specifiers
    # 6.7.2p2: the specifier list should be one of these
    type =
      case type_specs
      when [:void]
        Void.new
      when [:char]
        Char.new
      when [:signed, :char]
        Char.new :signed => true
      when [:unsigned, :char]
        Char.new :signed => false
      when [:short], [:signed, :short], [:short, :int],
        [:signed, :short, :int]
        Int.new :longness => -1
      when [:unsigned, :short], [:unsigned, :short, :int]
        Int.new :unsigned => true, :longness => -1
      when [:int], [:signed], [:signed, :int]
        Int.new
      when [:unsigned], [:unsigned, :int]
        Int.new :unsigned => true
      when [:long], [:signed, :long], [:long, :int],
        [:signed, :long, :int]
        Int.new :longness => 1
      when [:unsigned, :long], [:unsigned, :long, :int]
        Int.new :longness => 1, :unsigned => true
      when [:long, :long], [:signed, :long, :long],
        [:long, :long, :int], [:signed, :long, :long, :int]
        Int.new :longness => 2
      when [:unsigned, :long, :long], [:unsigned, :long, :long, :int]
        Int.new :longness => 2, :unsigned => true
      when [:float]
        Float.new
      when [:double]
        Float.new :longness => 1
      when [:long, :double]
        Float.new :longness => 2
      when [:_Bool]
        Bool.new
      when [:float, :_Complex]
        Complex.new
      when [:double, :_Complex]
        Complex.new :longness => 1
      when [:long, :double, :_Complex]
        Complex.new :longness => 2
      when [:float, :_Imaginary]
        Imaginary.new
      when [:double, :_Imaginary]
        Imaginary.new :longness => 1
      when [:long, :double, :_Imaginary]
        Imaginary.new :longness => 2
      else
        if type_specs.length == 1 &&
            [CustomType, Struct, Union, Enum].any?{|c| type_specs[0].is_a? c}
          type_specs[0]
        else
          if type_specs == []
            parse_error pos, "no type specifiers given"
          else
            parse_error pos, "invalid type specifier combination: #{type_specs.join(' ')}"
          end
        end
      end
    type.pos ||= pos

    # set type qualifiers
    # 6.7.3p4: type qualifiers can be repeated
    type.const    = specs.any?{|x| x.equal? :const   }
    type.restrict = specs.any?{|x| x.equal? :restrict}
    type.volatile = specs.any?{|x| x.equal? :volatile}

    return type
  end

  def make_parameter(pos, specs, indirect_type, name)
    type = indirect_type
    if type
      type.direct_type = make_direct_type(pos, specs)
    else
      type = make_direct_type(pos, specs)
    end
    [:typedef, :extern, :static, :auto, :inline].each do |sym|
      specs.include? sym and
        parse_error pos, "parameter `#{declarator.name}' declared `#{sym}'"
    end
    return Parameter.new_at(pos, type, name,
                            :register => specs.include?(:register))
  end

  def add_type_quals(type, quals)
    type.const    = quals.include?(:const   )
    type.restrict = quals.include?(:restrict)
    type.volatile = quals.include?(:volatile)
    return type
  end

  #
  # Add te given type as the "most direct" type to the given
  # declarator.  Return the declarator.
  #
  def add_decl_type(declarator, type)
    if declarator.indirect_type
      declarator.indirect_type.direct_type = type
    else
      declarator.indirect_type = type
    end
    return declarator
  end

  def param_list(params, var_args)
    if params.length == 1 &&
        params[0].type.is_a?(Void) &&
        params[0].name.nil?
      return NodeArray[]
    elsif params.empty?
      return nil
    else
      return params
    end
  end

  def parse_error(pos, str)
    raise ParseError, "#{pos}: #{str}"
  end

---- header

require 'set'

# Error classes
module C
  class ParseError < StandardError; end
end

# Local variables:
#   mode: ruby
# end: